
Introduction to LLVM (II)
Bojian Zheng

CSCD70 Spring 2018

bojian@cs.toronto.edu

1

mailto:bojian@cs.toronto.edu


Makefile Error: Optimize.mk

• In the Optimize.mk file provided in the first assignment, you might 

need to add ./ in front of the optimizer target FunctionInfo.so.

• Thanks a lot to Chengyu (Tyrone) Xiong for pointing this out.

2



Review

• Keywords:

• Intermediate Representation (IR)

• Optimization Pass

• Analysis & Transformation

3



Review

• Keywords:

• Program Structure

• Iterators

• Downcasting

• LLVM Pass Interface

4



Transformations

5



Insert/Remove/Move/Replace Instructions

• Three Options

•Instruction class methods.

• Ask parent (BasicBlock) to do this.

• Make use of BasicBlockUtils.

6



Attention! Iterator Hazard

• As you do transformations, iterators might be invalidated.

• → Demo on std::vector < unsigned > ::iterator

• Thanks a lot to Qiongsi Wu for bringing this up.

7



Attention! Reference Updates

Original Code
%2 = add %1, 0

%3 = mul %2, 2

Transformed Code
%2 = add %1, 0

%3 = mul ???, 2

8



Questions?

• Keywords:

• Iterator Hazard

• References Update (More Later On)

9



LLVM Instruction: The 
User-Use-Usee Design Pattern

10



LLVM Class Hierarchies

11

Value InstructionUser



Value (Usee)

• The Value class is the most important base class in LLVM.

• It has a type (integer, floating point, …): getType()

• It might or might not have a name: hasName(), getName()

• Keeps track of a list of Users that are using this Value.

12



Instruction (User)

• An User keeps track of a list of Values that it is using as 

Operands:

User user = …

for (auto iter = user.op_begin(); 

iter != user.op_end(); ++iter)

{Value * operand = *iter; …}

• An Instruction is a User.

13



But wait, …

• Is Instruction (User) a Value (Usee)?

%2 = add%1, 10

• DO NOT interpret this statement as “the result of Instruction 
add%1, 10 is assigned to %2”, instead, think this way – “%2 is the 

Value Representation of Instruction add%1, 10”.

• Therefore, whenever we use the Value %2, we mean to use the 
Instruction add%1, 10.

14



To Conclude

• Suppose we have an instruction: Instruction inst = …

• What is this instruction using?

for (auto iter = inst.op_begin(); 

iter != inst.op_end(); ++iter)

{…}

• What is using this instruction?

for (auto iter = inst.user_begin(); 

iter != inst.user_end(); ++iter)

{…}

15



Questions?

• Keywords:

• User-Use-Usee Design Pattern

16



Optimizer Manager

17



Optimizer Manager

• What is this doing?
void Analysis::getAnalysisUsage(AnalysisUsage & AU) 

const

{

AU.setPreservesAll();

}

• Very frequently, when writing a pass, we want the followings:

• What information does this pass require?

• Will this information still be preserved after this pass?

18



Questions

• Keywords:

• Require

• Preserve

19



Code Download Links

• https://github.com/ArmageddonKnight/CSCD70-Tutorial-Demo

•Visitor Design Pattern

• serves as an alternative to Dynamic Casting.

• You can find an example on this in the repository.

20

https://github.com/ArmageddonKnight/CSCD70-Tutorial-Demo

